觀察| 歐洲2030年電池計劃

2020-10-22 11:33:55 太陽能發(fā)電網(wǎng)
《電池2030+(BATTERY2030+)》是一項大規(guī)模的歐洲長期研究計劃,為歐盟委員會提出的戰(zhàn)略能源技術(shù)計劃(SET-plan)的想法之一,旨在聯(lián)合歐洲整體解決未來電池研發(fā)過程中所面臨的各項挑戰(zhàn),克服重重阻力達(dá)成宏大的既定的電池性能目標(biāo)。研究內(nèi)容以“化學(xué)中性途徑(chemistry neutral approach)”為導(dǎo)向

《電池2030+(BATTERY2030+)》是一項大規(guī)模的歐洲長期研究計劃,為歐盟委員會提出的戰(zhàn)略能源技術(shù)計劃(SET-plan)的想法之一,旨在聯(lián)合歐洲整體解決未來電池研發(fā)過程中所面臨的各項挑戰(zhàn),克服重重阻力達(dá)成宏大的既定的電池性能目標(biāo)。研究內(nèi)容以“化學(xué)中性途徑(chemistry neutral approach)”為導(dǎo)向,基于現(xiàn)有或未來多種不同類型的電池化學(xué)物質(zhì),通過縮小各自之間的差距來發(fā)揮其全部潛力以實現(xiàn)電池的實際能力和理論極限。理念上基于給歐洲電池企業(yè)乃至全球電池企業(yè)的價值鏈提供新的發(fā)展和支持,比如從原材料到先進材料的發(fā)展,到電池和電池包的設(shè)計制造,電池壽命終止后的回收利用和電池實際應(yīng)用場景等。除此之外,《電池2030+》的長期發(fā)展路線圖也充分地彌補了歐洲電池內(nèi)部的中期研究和創(chuàng)新工作–歐洲技術(shù)和創(chuàng)新平臺(ETIP)。

因此,歐盟希望借助于《電池2030+》來推動歐洲為期10年的大規(guī)模努力以促進電池領(lǐng)域的變革性發(fā)展。不斷提出新的研究方法和開拓新的創(chuàng)新領(lǐng)域,實現(xiàn)安全的超高性能電池開發(fā),最終實現(xiàn)歐洲社會2050年前不再使用化石能源(如圖1所示)。2019年3月,歐盟啟動《電池2030+》協(xié)調(diào)和支持行動,以確定計劃的研發(fā)路線圖。本次發(fā)布的《電池2030+》研發(fā)路線圖第二版草案經(jīng)討論修改后,將于2020年2月底提交給歐盟委員會。


圖1. 《電池2030+》的長期愿景及使命

Part II:“電池2030+”計劃目標(biāo)

《電池2030+》的總體目標(biāo)是實現(xiàn)具有超高性能和智能化的可持續(xù)電池功能以適用于每個應(yīng)用場景。所謂超高性能,是指能量和功率密度接近理論極限,出色的使用壽命和可靠性,增強安全性,環(huán)境可持續(xù)性和可擴展性,以實現(xiàn)具有競爭力成本的大規(guī);a(chǎn)電池。第一個重要挑戰(zhàn)是達(dá)到最好的電池性能,因此發(fā)現(xiàn)新材料和新化學(xué)體系的開發(fā)過程必須加快!峨姵2030+》提出電池界面基因組(BIG)–材料加速平臺(MAP)計劃,將采用人工智能(AI)大幅減少電池材料的開發(fā)周期。第二個重要挑戰(zhàn)是延長單體電池和電池系統(tǒng)的使用壽命和安全性。壽命和安全都對未來電池的大小,成本和接受度具有關(guān)鍵性影響。為了實現(xiàn)第二個挑戰(zhàn),《電池2030+》提出了兩種不同且互補的建議方案:開發(fā)直接在化學(xué)和電化學(xué)反應(yīng)中可探測的傳感器,將新型傳感器嵌入電池中連續(xù)監(jiān)控其“健康”和“安全狀態(tài)”。另一方面,通過使用自愈合功能來提高電池容量并提高電池性能。

與目前最先進的電池技術(shù)相比,《電池2030+》旨在提出并影響電池技術(shù)的未來發(fā)展(如圖2):

第一,將電池實際性能(能量密度和功率密度)和理論性能之間的差距減少至少1/2。

第二,至少將電池的耐用性和可靠性提高3倍。

第三,對于給定的電力組合,將電池的生命周期碳足跡減少至少1/5。

第四,使電池的回收率達(dá)到至少75%,并實現(xiàn)關(guān)鍵的原材料回收率接近100%。


圖2.《電池2030+》對未來電化學(xué)存儲系統(tǒng)的最新技術(shù)展望

Part III:“電池2030+”主要研發(fā)方向

3.1 材料加速平臺(Materials Acceleration Platform,MAP)

從能源技術(shù)的生產(chǎn),存儲到最終交付使用,材料的發(fā)現(xiàn)和開發(fā)始終貫穿于整個過程。特別對于新興的電池技術(shù),先進材料幾乎是所有清潔能源創(chuàng)新的基礎(chǔ)。若依靠現(xiàn)有的傳統(tǒng)重復(fù)性試驗開發(fā)過程,需要耗費大量的時間,人力物力去開發(fā)新型高性能電池材料并用于電池設(shè)計,這一過程從最初發(fā)現(xiàn)到完全實現(xiàn)商業(yè)化可能長達(dá)10年之久。因此,在《電池2030+》項目中,為了加速超高性能的,可持續(xù)發(fā)展的智能型電池開發(fā),計劃在歐洲范圍內(nèi)設(shè)立電池“材料加速平臺(MAP)”,并與電池界面基因組(BatteryInterface Genome,BIG)集成在一起。同時BIG-MAP基礎(chǔ)設(shè)施模塊化設(shè)置,全系統(tǒng)具有高度的通用性,以便能夠容納所有新興的電池化學(xué)體系,材料成分,結(jié)構(gòu)和界面。另一方面,MAP將利用人工智能(AI)從許多互補的方法和技術(shù)中集成和編排數(shù)據(jù),整合計算材料設(shè)計,模塊化和自主性綜合機器人技術(shù)和先進表征,實現(xiàn)全新的電池開發(fā)策略。促進材料,工藝和設(shè)備的逆向設(shè)計和定制。最終,在MAP框架下由每個核心元素構(gòu)建概念電池,開發(fā)出具有突破性的電池材料,極大提高電池開發(fā)速度和電池性能。


圖3. 電池材料加速平臺(MAP)的核心組成部分

一)MAP重點研發(fā)技術(shù)

a. 高通量技術(shù):開發(fā)自主材料合成機器人,構(gòu)建電池材料自身及使用過程中原位的自動化高通量表征。實現(xiàn)電極活性材料及其組合方式的快速篩選和電解液配方的系統(tǒng)表征。基于高通量數(shù)據(jù)的建模和數(shù)據(jù)生成相結(jié)合,以物理參數(shù)為導(dǎo)向?qū)﹄姵丶捌浠钚圆牧线M行分析和表征。

b. 建立基于分布式訪問模型的跨區(qū)域通用數(shù)據(jù)基礎(chǔ)架構(gòu),實現(xiàn)多維度互連和集成工作流程:確保在材料的閉環(huán)研發(fā)過程中,能夠?qū)崟r進行跨區(qū)域的實驗數(shù)據(jù)集成和建模。通過數(shù)據(jù)的共享實現(xiàn)信息的匯總及規(guī);治。以機器學(xué)習(xí)和物理理論為導(dǎo)向的數(shù)據(jù)驅(qū)動模型去識別材料開發(fā)過程中重要的參數(shù)和特征,開發(fā)有效的和穩(wěn)固的方式耦合和連接不同維度的模型,加速材料開發(fā)過程。

c. 開發(fā)基于電池系統(tǒng)的人工智能(AI),構(gòu)建統(tǒng)一數(shù)據(jù)框架:基于AI技術(shù)開發(fā)集成物理參數(shù)和數(shù)據(jù)驅(qū)動的混合型模型。比如目前已有一些AI軟件包如ChemOS和phoenix正在用于自驅(qū)動實驗室的原型開發(fā)階段。利用歐洲材料建模委員會(EMMC)和歐洲材料與建模本體(EMMO)支持的訪問協(xié)議,將學(xué)術(shù)界和工業(yè)界、材料建模和實際應(yīng)用工程聯(lián)系起來,實現(xiàn)電池整體價值鏈的數(shù)據(jù)標(biāo)準(zhǔn)化傳遞及共享。

d. 電池材料和界面的逆向設(shè)計工程:通過所需的目標(biāo)性能定義電池材料和/或界面的組成和結(jié)構(gòu),從而打破傳統(tǒng)的開發(fā)過程,促進材料的高效高速開發(fā)。

(二)MAP研發(fā)計劃

短期計劃:開發(fā)用于電池材料和電池本身的共享且可互操作的數(shù)據(jù)基礎(chǔ)架構(gòu)接口,涵蓋電池發(fā)現(xiàn)和開發(fā)周期所有領(lǐng)域的數(shù)據(jù);自動化的工作流程,用于識別在不同時間尺度下傳遞相關(guān)特征/參數(shù);構(gòu)建基于不確定性的電池材料的數(shù)據(jù)驅(qū)動和物理模型。

中期計劃:在材料加速平臺(MAP)中實現(xiàn)電池基因組(BIG-MAP)構(gòu)建,能夠集成計算建模,自主合成機器人技術(shù)和材料表征;展示電池材料的逆設(shè)計過程;在發(fā)現(xiàn)和預(yù)測過程中直接集成來自嵌入式傳感器的數(shù)據(jù),例如主動的自我愈合。

長期計劃:在電池基因組平臺中建立完全的自主開發(fā)過程;集成電池單元組裝和設(shè)備級測試;包含材料發(fā)現(xiàn)過程中的可制造性和可回收性;展示材料開發(fā)周期的5倍加速;實施并驗證用于電池超高通量測試的數(shù)字技術(shù)。


3.2 電池界面基因組(Battery interface genome,BIG)

電池不僅包含電極和電解質(zhì)之間的界面,而且還包含其他大量重要的界面,例如:在集流體和電極之間或在活性材料和諸如導(dǎo)電碳和/或粘結(jié)劑等的添加劑之間。因此在開發(fā)新的電池化學(xué)體系或現(xiàn)有電池技術(shù)中引入新的化學(xué)物質(zhì)時,界面是有效利用電池電極材料關(guān)鍵之所在。MAP是提供基礎(chǔ)設(shè)施以加快材料的發(fā)現(xiàn),而《電池2030+》提出BIG將對材料開發(fā)過程提供必要的理解和模型,以預(yù)測和控制影響電池性能關(guān)鍵界面的動態(tài)變化(如圖4所示)。BIG將高度適應(yīng)不同的化學(xué)物質(zhì),從材料到設(shè)計,用大量數(shù)據(jù)構(gòu)建模型,形成全新的材料開發(fā)途徑,以超越當(dāng)前的鋰離子電池技術(shù)。


圖4. 電池界面基因組(BIG)運作流程

(一)BIG重點研發(fā)技術(shù)

a. 開發(fā)更高的空間、時間分辨率和運算速度的新型計算方法和實驗技術(shù):以獲得超高性能電池系統(tǒng)構(gòu)造和材料組合搭配的新理解。通過基于物理的數(shù)據(jù)驅(qū)動混合模型和仿真技術(shù)描述最先進的實驗和技術(shù)方法。

b. 開發(fā)具有高還原度的電池界面表征技術(shù):通過對電池界面及其動態(tài)特性的精確表征,建立電池界面屬性的大型共享數(shù)據(jù)庫,利用大數(shù)據(jù)再對表征技術(shù)進行優(yōu)化調(diào)整,不斷修正測試偏差,真實還原界面工作過程,提高保真度。

c. 建立電池及其材料的標(biāo)準(zhǔn)化測試協(xié)議:發(fā)布詳細(xì)的材料表征檢查列表,通過將電池性能與材料化學(xué)性質(zhì)逐一比對來獲取有關(guān)電池界面的關(guān)鍵信息。

d. 構(gòu)建更精確的材料結(jié)構(gòu)與電池性能模型:利用電子,原子及介觀材料尺度模型耦合形成連續(xù)相模型,真實反映電池正常工作時的界面狀態(tài)、老化和衰減機制。

(二)BIG研發(fā)計劃

短期計劃:建立一定范圍內(nèi)表征/測試協(xié)議和數(shù)據(jù)的電池界面標(biāo)準(zhǔn);開發(fā)可利用AI和仿真模擬技術(shù)進行動態(tài)特征分析和數(shù)據(jù)測試的自主模塊;開發(fā)可互操作的高通量和高保真的界面表征方法。

中期計劃:開發(fā)預(yù)測混合模型,用于在時間和空間尺度上推演電池界面;演示模型電池間逆向合成設(shè)計;能夠在MAP平臺(BIG-MAP)中實現(xiàn)電池界面基因組計算建模,自主綜合機器人技術(shù)和材料的集成表征。

長期計劃:在BIG-MAP平臺中建立完全的自主開發(fā)過程;證明界面性能提高5倍;表明電池界面基因組到新型電池化學(xué)的可移植性。

3.3 智能傳感器(Integration of smart functionalities–sensing)

隨著目前對電池應(yīng)用的依賴性不斷提高,要求對電池的狀態(tài)進行準(zhǔn)確監(jiān)控,提高其質(zhì)量,可靠性和使用壽命。在過去幾十年中,雖然許多電化學(xué)阻抗設(shè)備(EIS)以及先進的電池管理系統(tǒng)(BMS)發(fā)展,但成效有限。無論電池技術(shù)發(fā)展如何,性能仍取決于電池單元內(nèi)界面的性質(zhì)和依賴于溫度驅(qū)動的反應(yīng)以及不可預(yù)測的動力學(xué)。雖然監(jiān)控溫度對于延長循環(huán)壽命和延長電池壽命至關(guān)重要,但在目前電動汽車的應(yīng)用中也無法直接測量單體電池的溫度。為了更好了解/監(jiān)測電池工作過程中的物理參數(shù)對電化學(xué)反應(yīng)過程的影響,有效解決黑箱問題!峨姵2030+》提出將智能傳感器嵌入到電池中,能夠?qū)崿F(xiàn)電池在空間和時間上的分辨監(jiān)視(如圖5所示)。這樣可以整合和開發(fā)各種傳感技術(shù)在電池中以實時傳遞信息(如溫度,壓力,應(yīng)變,電解質(zhì)成分,電極膨脹度,熱流變化等)。最重要的是依據(jù)大量的原位實時監(jiān)測數(shù)據(jù),可以與BIG-MAP協(xié)作構(gòu)建電池工作狀態(tài)函數(shù)及模型,開發(fā)智能的響應(yīng)式電池管理系統(tǒng)。將在單體電池級別和整個系統(tǒng)級別上進行分層管理。


圖5. 未來具有原位傳感及輸出分析裝置的電池

(一)智能傳感器重點研發(fā)技術(shù)

a. 集成和開發(fā)適用于電池的多種傳感器,將智能功能嵌入電池:光學(xué)、電學(xué)、熱學(xué)、聲學(xué)和電化學(xué)傳感器用于設(shè)計/開發(fā)固態(tài)電解質(zhì)(SEI)中間相動態(tài)監(jiān)測功能。比如利用電阻溫度檢測器(RTD),熱敏電阻,熱電偶等溫度傳感器監(jiān)控電池內(nèi)外的局部及整體溫度變化。電化學(xué)傳感器主要用于監(jiān)控電池界面SEI增長,氧化還原穿梭物質(zhì)和重金屬溶解。壓力傳感器可以檢測電極應(yīng)變和壓力變化,從而反應(yīng)電池的SoC以及SoH狀態(tài)。光學(xué)傳感器則可以對電池局部溫度,壓力和應(yīng)變通過光學(xué)信號同時感應(yīng),其中光子晶體纖維傳感器可以對多感應(yīng)信號同時采集但又解耦合分析,是未來發(fā)展多參數(shù)監(jiān)測新型傳感器的趨勢。

b. 開發(fā)具有創(chuàng)新化學(xué)涂層的傳感器:采用特殊涂層的傳感器,減緩電解液及電化學(xué)反應(yīng)副產(chǎn)物對傳感器的腐蝕,提升器件穩(wěn)定性,傳導(dǎo)靈敏性和使用壽命。將傳感器尺寸減小到幾微米以匹配電池隔離膜的厚度,采用無線傳感技術(shù)來避免復(fù)雜的連接布線問題




作者: 來源:鑫欏鋰電 責(zé)任編輯:jianping

太陽能發(fā)電網(wǎng)|roeg.cn 版權(quán)所有